This code is a solution to the problem of counting the "1" bits in a variable of integral type. It uses recursive templates to generate a table of precalculated values for 0 through 255, then breaks the input value into bytes that are looked up into the table:
#include <cassert>
#include <cstdlib>
// Recursive template, computes the number of bits set
// in an integer (e.q. Bits<127>::count == 7)
template<int N>
struct Bits
{
static const unsigned count = (N & 1) + Bits<(N >> 1)>::count;
};
template<> struct Bits<0>
{
static const unsigned count = 0;
};
// This template recursively generates a constructor
// that will populate a table of 256 entries
template<int N>
struct Table : public Table<N - 1>
{
Table<N>()
{
this->bitcount_[N - 1] = Bits<N - 1>::count;
}
};
template<> struct Table<0>
{
unsigned bitcount_[256];
};
static const size_t BYTE_SIZE = 8;
static Table<256> table;
template<typename T>
unsigned count_bits(T value)
{
size_t result = 0;
for (size_t i = 0;
value && (i != sizeof(T));
++i, value >>= BYTE_SIZE)
{
result += table.bitcount_[value & 0xff];
}
return result;
}
unsigned count_bits(unsigned char value)
{
return table.bitcount_[value];
}
unsigned count_bits(char value)
{
return count_bits(static_cast<unsigned char>(value));
}
// test
int main()
{
assert(Bits<127>::count == 7);
assert(count_bits(0) == 0);
assert(count_bits(1) == 1);
assert(count_bits(-1) == 32);
assert(count_bits((char)-1) == 8);
assert(count_bits(3) == 2);
assert(count_bits(127) == 7);
assert(count_bits(1023) == 10);
assert(count_bits(1025) == 2);
return 0;
}
No comments:
Post a Comment